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ABSTRACT

The paper discusses a novel harmonic-balance approach to
the computation of near-carrier phase and amplitude noise in
free-running microwave oscillators. The well-known qualita-
tive picture of phase noise generation is quantitatively re-stated
in a way compatible with the needs of general-purpose CAD.
The capabilities of previously available approaches to the same
problem are extended under several aspects.

INTRODUCTION

A noise analysis capability represents one of the
indispensable features of a general-purpose simulator for
nonlinear microwave integrated circuits. In particular, nonlinear
noise analysis by the harmonic-balance (HB) technique is very
effective, because frequency-domain analysis is naturally well-
suited for describing the physical mechanisms of noise
generation in nonlinear circuits [1]. In the last few years this
topic has attained a considerable degree of maturity thanks to
the efforts of several research teams throughout the world
(e.g., [2], [3]), and some of the first commercial applications
have began to appear. In spite of this, a general and rigorous
treatment of the application of HB methodology to the noise
analysis of autonomous nonlinear circuits, has not yet appeared
in the open literature. This paper represents an attempt to fulfill
this gap.

For an autonomous circuit, such as a free-running
oscillator or a VCO, a noise analysis is considerably more
complex than for a conventional forced circuit, and in
particular, the usual noise theory based on frequency-
conversion analysis [1] is not sufficient to solve the problem.
This is primarily due to the fact that the physical effects of
random fluctuations taking place in the circuit are qualitatively
different depending on their spectral allocation with respect to
the carrier. Noise components at low frequency deviations
primarily produce a frequency modulation of the carrier, with a
mean-square frequency fluctuation proportional to the available
noise power. Noise components at high frequency deviations
primarily produce a phase modulation of the carrier, with a
mean-square phase fluctuation proportional to the available
noise power. This qualitative picture of oscillator noise is
obviously very well known (e.g., [4]). The main purpose of
the paper is to show that the same picture can also be
quantitatively derived from the HB equations of the
autonomous circuit, and can thus be developed into a
computational algorithm fully compatible with the requirements
of a general-purpose CAD environment.

THE NOISE ANALYSIS ALGORITHM
Let us consider a nonlinear circuit designed to support an
autonomous stable time-periodic regime of fundamental angular
frequency ¢ (carrier). For the purpose of HB analysis, the
circuit is subdivided into a linear and a nonlinear subnetwork in
the way shown in fig. 1. At first let us assume that the circuit is
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forced by DC sources and by a set of sinusoidal sources
located at the carrier harmonics kg (henceforward synthe-
tically identified by the subscript "H"), and at the sidebands
o + kg (identified by the subscript "B"), where -ny £k <ny
and ny is the number of carrier harmonics to be taken into

account in the analysis. The angular frequency o (0 < ® < @)
will be called the frequency deviation from the carrier.
The electrical regime is then quasi-periodic and can be found by
solving a nonlinear algebraic system of the form [5]

EXp, Xy)=F ¢))

where E is the vector of real and imaginary parts of all HB
errors [5]. IF is a forcing term comprehensive of DC, harmo-
nic, and sideband excitations. In (1) the problem unknowns,
consisting of the real and imaginary parts of the state-variable
(SV) harmonics, have been organized in two vectors Xp
(containing the sideband components) and Xy (containing
components at the carrier harmonics). Similarly, the error
vector E can be subdivided into two subvectors Eg, Eg.

For the analysis of the autonomous (noiseless) steady
state, the forcing term IF in (1) only contains DC sources.
By assumption this solution has the form X =0, Xy = Xj,

where the label "ss" denotes steady-state quantities. Since the
system is autonomous, the phase of the steady state is
arbitrary, and the carrier frequency @ represents one of the
problem unknowns [5]. Thus in the vector Xy the phase (or

the imaginary part) of one of the harmonics is replaced by @y,
Let us now assume that the steady state is perturbed by
noise generated inside the circuit. According to {1], this situa-
tion can be described by introducing a noise voltage and a noise
current source at every interconnecting port, as shown in
fig. 1. These sources are comprehensive of all noise contribu-
tions generated by the linear and the nonlinear subnetwork.
If the noise perturbations are small, the noise-induced deviation

[8Xjp, 8Xy] of the system state from the steady state [0, X5)
may be quantitatively described by perturbing (1) in the
neighborhood of the steady state, i.e.,

MBB SXB + MBH SXH = JB(O))
@
Myp 8Xp + Mpy 8Xy = Jy(w)

where My, A (aEy/BXZ)LS and Y, Z stand for B, H in any

combination. Exact algorithms for the computation of the
Jacobian matrices My are discussed in [5]. Since in steady-
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state conditions Xp =0, by inspection of the equations
reported in [5] we get Mgy = Myg = 0, so that (2) reduce to

&)
@)

MBB SXB = JB((D)
MHH SXH = JH((\))

The sideband and harmonic forcing terms Jg(®), Jg(w)
in (2) - (4) are exclusively related to the noise sources, and
deserve some comments. For a spot noise analysis at an

angular frequency deviation ®, the noise sources may be physi-
cally interpreted in either of two ways. They can be viewed as
pseudo-sinusoids having random amplitudes and phases, and
deterministic frequencies corresponding to the noise sidebands.
Under this viewpoint all the forcing terms in (2) are contained

in Jg(®), and Jg(w) = 0. Alternatively, the sources can be
viewed as sinusoids located at the carrier harmonics, which are
randomly phase- and amplitude-modulated by pseudo-

sinusoidal noise at frequency ®. Under this viewpoint all the

forcing terms in (2) are contained in Jy(w), and Jp(w) = 0.
The second viewpoint, which is quasi-stationary, can
intuitively be expected to hold at low frequency deviations.
This will be confirmed by the discussion to follow.
Accordingly, the uncoupled equations (3), (4) provide two
alternative descriptions of noise in the autonomous system [4].
Eqn. (3) describes noise as being generated by the exchange of
power among the sidebands of the unperturbed large-signal
steady state through frequency conversion taking place in the
nonlinear devices. We shall refer to this mechanism as
conversion noise. This is exactly the same situation
encountered in forced circuits, and has been dealt with in depth
in the technical literature (e.g., [1] - [3]). General expressions
for the PM and AM noise generated by (3) are already available
[1], so that this aspect will not be further considered here. Note
that the phase and amplitude modulation of the carrier produced
by (3) are due to the superposition on the carrier itself of a
lower and an upper sideband at the same frequency deviation.
This results in a mean-square phase fluctuation proportional to
the available noise power [1]. Egn. (4) describes the noise-
induced jitter of the oscillatory steady state, mathematically

represented in the state space by the vector 8Xg. Since one of
the entries of 8Xy is 80y, this results in a frequency jitter with
a mean-square value proportional to the available noise power.
We shall refer to this mechanism as modulation noise.
The associated mean-square phase fluctuation is proportional to
the available noise power divided by o

For a quantitative development of (4), the forcing term
J (@) must now be specified. In a conventional (determi-
nistic) HB analysis, J y(w) would contain the real and imagi-
nary parts of the synchronous perturbation phasors at k.
For a noise analysis, the noise source waveforms may be
described as sinusoids of frequencies ky modulated in both
amplitude and phase at a rate ®. In (4) the phasors of the
deterministic perturbations are thus replaced by the complex
modulation laws, each generated by the superposition of an
upper and a lower sideband contribution. Referring to fig. 1,
let us first introduce the equivalent Norton phasors of the noise
source sidebands

T (@) = - [Ji(w) + Y(0 + kayg) Up()] &)

where Y is the linear subnetwork admittance matrix. In (5)
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Ji (@), U() are phasors of the pseudo-sinusoids representing
the noise components falling in 1 Hz bands located in the

neighborhood of the sidebands @ + kg, In phasor notation
with a rotating factor exp(jort) understood, we thus obtain

T (@)

J(w) + T (o) (1<k<ng)

Jp(w) = ©

I (0) +§ T (@)

Eqn. (4) can now be solved for 38X and thus for dmy.
Let us introduce the row matrix $ = [00 ... 1 ... 0], where the
nonzero element corresponds to the position of the entry 3wy in
the vector 8Xp. We obtain

Seg(@) = S [Myg]™ (@) 2T T(w) )

where 8wg(®) represents the phasor of the pseudo-sinusoidal
component of the fundamental-frequency fluctuations in a 1 Hz
band at frequency . Furthermore, a straightforward pertur-
bative analysis of the linear subnetwork allows the perturba-
tions on the current through the load resistor R to be linearly
related to the perturbation on the state vector, X, obtained
from (4). For the phasor of the pseudo-sinusoidal component
of the load current fluctuations in a 1 Hz band at a deviation @

from kwy, we may thus write an equation of the form

Bl (®) = Tpx Ty(w) ®
From (7) we obtain the expression of the k-th harmonic PM
noise due to modulation

2
<I8®y ()i*> = % Tp<Ig(@) Jg'(@)> Tg! ©)

where <> denotes the ensemble average, and T the conjugate
transposed. Similarly, from (8) we derive the k-th harmonic
AM noise-to-carrier ratio

2

<IBAL()%> = >
>

Tae<Ta@) Iyt Ty, 10)

where I° is the k-th harmonic of the steady-state current
through the load. Finally, the k-th harmonic PM-AM correla-

tion coefficient is given by [1}
MM (@) & <3 D (0) 3A ¥ (@)> =

w2

o LI

Tp<Ig@) Tg')> Tyt an

where * denotes the complex conjugate. Eqn. (9) - (11) can
also be used to derive the near-carrier RF spectrum of the noisy



oscillator, i.e., the noise power spectral densities Ny () at the
sidebands @ + ko [1]:

2
Ny@) = 7R {55 1P Ty <Tg(0) Tyf@> Tt +
()
+ T g <T (@) T (@)> Tl +

+2 IRl Tr <T@ Jg'@>Tol1} ()

The overall picture of oscillator PM noise is now evident
by comparison of (9) with the results of (3). In the presence of
both thermal and 1/f noise sources, conversion noise invariably

raises as ! for ®—0, and modulation noise as &>, The latter
is consistent with experimental observations, while the former
is not. Thus very near-carrier noise is essentially a modulation
phenomenon and has to be described by (4) and (9). On the

other hand, for ®— < modulation noise vanishes due to (9),
while conversion noise tends to a finite limit corresponding to
the oscillator noise floor. Again, the latter is consistent with
experimental observations, while the former is not. Thus very
far-from-carrier noise is essentially a conversion phenomenon
and has to be described by (3). Eqn. (3) and (4) necessarily
yield the same evaluation of phase noise at some crossover

frequency ®,. Thus, in order to compute PM noise at any fre-
quency deviation, an obvious criterion is to use (4) below @,,

and by (3) above w,. Note that this approach is not as artificial
as it might seem at a first glance, since in many practical cases
(3) and (4) yield virtoally identical results in a broad neighbor-

hood of w, (often more than two decades). An example is
given in fig. 3. The same criterion is used for computing AM
noise. It is noteworthy that in many practical cases, (3) and (4)
give almost identical results for AM noise at all frequency
deviations, so that the two viewpoints are then essentially
equivalent. An example is again given in fig. 3.

One final point is worth some consideration. In most
practical cases, the noise waveforms generated by a nonlinear
device are deterministic functions of the device state, possibly
through some state-dependent device parameter(s). Such
waveforms are thus periodically modulated by the large-signal
steady state. This implies that in general the device noise
sources are not stationary in the strict sense, but only wide-
sense stationary, from the statistical viewpoint [6]. Thus they
still admit a spectral description, which may be developed in
the way outlined below. The modulation will in general
produce noise source sidebands which will appear in the
forcing term Jy(w) of (4) even in the case of base-band
sources. The theory of noise source modulation has been
developed in detail in 1], [2], and will not be repeated here.
We shall only report the results of the application of this theory
to a typical flicker noise current source having the DC
(unmodulated) spectral density

I, P
o*

<Nw)iE>=Q 13)

where I is the bias value of some current ip(t) flowing through

the device, and Q, o, B are model parameters (& = 1). In the
presence of the large-signal oscillatory regime, ip(t) becomes a
periodic function of time, and noise sidebands appear in the
source spectrum. In complex phasor notation, the correlation
coefficient of the p-th and g-th sidebands is given by [1]
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0 + swol®

PN Ay

o

(14)

<I (@) I (@)>= QZ

S=-ny

where H is the k-th harmonic of lip(t)i?"2. The last approxi-
mate equality on the right-hand side of (14) is justified by the

fast decay of the source spectral density for increasing .
The contribution of the flicker noise source under consideration
to the correlation matrix <Jg(w) J HT(O))> appearing in (9) -
(12) can be obtained from (5), (6) through (14) in a straight-
forward way.

TYPICAL RESULTS
Let us consider the microstrip DRO schematically depicted
in fig. 2. The circuit was designed by numerical optimization

for a steady-state oscillation at @y = 2% * 4.6 GHz with an
output power of +12.5 dBm. For noise analysis purposes, the
shot/diffusion noise in the channel is described by the usual
van der Ziel model [2], and the flicker noise by a voltage
source connected in series to the gate [7]. The spectral density

of this source is 3.35 « 10%/® VZ/Hz. Fig. 3 shows the
modulation and conversion contributions to the oscillator phase
noise at the nominal design point as a function of frequency
deviation from the carrier. The behavior outlined in the general
discussion is clearly observed. The figure also provides a
comparison with the measured PM noise. The analysis is seen
to accurately predict both the near-carrier PM noise and the
noise floor of the oscillator. Fig. 3 also shows the computed
AM noise (measured information on AM noise was not
available at the time of this writing). The AM noise curves
obtained from (3) and (4) are not distinguishable. The overall
CPU time required to produce all the results presented in fig. 3
is about 50 seconds on a SUN SPARCstation 2.

CONCLUSION

The paper introduces a novel general-purpose approach to
the noise analysis of microwave oscillators, based on the
piecewise harmonic-balance principle. The new method allows
the computation of far- and near-carrier noise in arbitrary user-
defined circuits, without any compromise on circuit topology,
nonlinear device models, and harmonic content of the periodic
steady state. Noise generation in autonomous systems is
shown to be originated by two independent mechanisms: direct
frequency modulation of the oscillator, dominant at low
frequency deviations, and conventional frequency conversion,
dominant at high frequency deviations. A unified treatment of
the two aspects is found to be possible as a rigorous logical
consequence of the harmonic-balance equations. In addition,
the analysis takes rigorously into account the non-stationarity
of the device noise sources due to the modulation of the source
waveforms operated by the large-signal steady state. Previous-
ly available noise analysis capabilities are extended and
improved by these new techniques in several ways. Kurokawa-
like approaches to oscillator noise {8] - [9] can easily be
reobtained as special cases of the general mathematical
treatment presented here, by application of the theory to
simplified oscillator models including the quasi-monochromatic
assumption. Noise analyses based on frequency-conversion
theory alone [10] are shown to be insufficient for predicting the
near-carrier noise in general oscillators at very low frequency
deviations, and are complemented by the modulation
contribution. Critical and unnecessary numerical procedures
such as the derivation of the Jacobian matrix with respect to
frequency [11] are completely avoided by removing the
Jacobian singularity through the use of the mixed-mode HB
analysis concept [5].
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Fig. 2 - Schematic topology of a microstrip DRO
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Fig. 3 - Simulated and measured near-carrier noise of a microstrip DRO
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